Math Excel Worksheet C: Review for Exam I

1. (a) Solve the equation $4^{5 x+1}=9$.
(b) Express the following quantity as a single logarithm:

$$
\log _{3}\left(x^{2}-9\right)-4 \log _{3}(x-1)+\frac{1}{2} \log _{3}(x)
$$

(c) Find the solutions of the equation

$$
\ln (x+10)-2 \ln (x-2)=0
$$

2. Compute the following (possibly infinite) limits or show that they do not exist.
(a) $\lim _{x \rightarrow \infty}\left(\sqrt{4 x^{2}+1}-2 x\right)$
(b) $\lim _{x \rightarrow \infty} \frac{7 x^{4}-2 x^{2}+x-\pi}{3 x^{4}-x^{3}+2}$
(c) $\lim _{x \rightarrow-2} \frac{2 x^{2}-3}{x-2}$
(d) $\lim _{x \rightarrow \frac{3 \pi}{2}} \frac{\sin (x)}{x}$
(e) $\lim _{h \rightarrow 0} \frac{(h+4)^{2}-16}{h}$
(f) $\lim _{x \rightarrow 1} \frac{3 x+7}{x-1}$
(g) $\lim _{x \rightarrow-3} \frac{\sin (x+3)}{x^{2}+5 x+6}$
3. Evaluate the following limits using the limit laws:
(a) $\lim _{x \rightarrow 1} \frac{x-4}{\sqrt{x}-2}$
(b) $\lim _{x \rightarrow 0} \frac{\sin (7 x)}{\sin (3 x)}$
(c) $\lim _{x \rightarrow-2} \frac{\ln (-5 x) \cdot e^{-3 x-6}}{x-2}$
4. Find a value of c such that $\lim _{x \rightarrow 2} \frac{x^{2}+3 x+c}{x-2}$ exists. Is this value unique? What is the value of the limit?
5. James has found a function $f(x)$ satisfying $f(0)>0$ and $f(5)>0$ that is continuous on $[0,5]$. He claims the Intermediate Value Theorem implies that $f(x)$ does not have a zero in the interval $[0,5]$. Is he correct? Why?
6. Suppose that $f(x)$ is a continuous function with $f(0) \geq 0$ and $f(1) \leq 1$. Prove that f has a fixed point in $[0,1]$, i.e, there is at least one real number $x \in[0,1]$, such that $f(x)=x$. (Hint: Let $g(x)=f(x)-x)$.
7. Use the Squeeze Theorem to evaluate the following limits:
(a) $\lim _{x \rightarrow 0} \tan (x) \cos \left(\sin \left(\frac{1}{x}\right)\right)$
(b) $\lim _{x \rightarrow 0}\left(x^{2} e^{\sin \left(\frac{1}{x}\right)}-7\right)$
(c) $\lim _{\omega \rightarrow 0^{+}} \cos \left(3 \omega+\frac{\pi}{2}\right) \arctan (\ln (\omega))$
8. Suppose a particle has position $f(x)=5 x^{2}-2 x$ meters at time x seconds.
(a) Find a formula for the average velocity of the particle over the time interval $[2,2+t]$.
(b) Estimate the instantaneous velocity of the particle at time 2 seconds using the following three values for t : $-0.1,0.1,0.01$.
9. What is the average rate of change of the function $f(x)=x^{2}+2 x-3$ over the interval $[1,4]$? What is the instantaneous rate of change of $f(x)$ at $x=2$?
10. Suppose that c is a constant and let

$$
f(x)= \begin{cases}c x+2 & x<1 \\ x^{2}+3 & x>1\end{cases}
$$

(a) Determine the right and left-hand limits,

$$
\lim _{x \rightarrow 1^{+}} f(x) \text { and } \lim _{x \rightarrow 1^{-}} f(x)
$$

(b) Find the value of c so that $\lim _{x \rightarrow 1} f(x)$ exists.
(c) For the value of c you found in (b), is the function f continuous at $x=1$? Justify your answer.
11. Find the values of c and d which make the following function continuous everywhere:

$$
f(x)=\left\{\begin{aligned}
-2 x+7, & x \leq 2 \\
c x+d, & 2<x \leq 5 \\
x^{2}-13, & 5<x
\end{aligned}\right.
$$

12. Evaluate the following:
(a) $\sin (\arcsin (1))$
(b) $\arctan \left(-\frac{1}{\sqrt{3}}\right)$
(c) $\arccos \left(\cos \left(\frac{5 \pi}{3}\right)\right)$
(d) $\arcsin \left(\cos \left(\frac{7 \pi}{6}\right)\right)$
13. Consider the function

$$
f(x)=\frac{2 x^{2}-4 x+3}{x^{2}-x-6}
$$

(a) Find the one-sided limits $\lim _{x \rightarrow 3^{+}} f(x)$ and $\lim _{x \rightarrow 3^{-}} f(x)$
(b) Does $\lim _{x \rightarrow 3}$ exist?
(c) Is $f(x)$ continuous at $x=3$?
14. Show that the function

$$
f(x)=\left\{\begin{array}{cl}
x^{4} \sin (1 / x) & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

is continuous on $(-\infty, \infty)$.
15. (a) Show that the absolute value function $F(x)=|x|$ is continuous everywhere.
(b) Prove that if f is continuous on an interval $[a, b]$, then so is $|f|$.
(c) Is the converse of (b) true? That is, does $|f|$ being continuous on $[a, b]$ imply that f is also continuous on $[a, b]$? Justify your answer.

